Note

Synthesis and carbon-13 n.m.r. spectroscopy of Man, Lys,-raffinose conjugate

MITREE M. PONPIPOM, ROBERT L. BUGIANESI, AND JAMES C. ROBBINS

Merck Sharp and Dohme Research Laboratories, Rahway, New Jersey 07065 (U.S.A.)

(Received February 4th, 1982; accepted for publication, February 24th, 1982)

Recently, we reported the synthesis of glycopeptides potentially useful as cell-specific ligands for selective drug delivery to tissues and organs¹. N^2 -{ N^2 , N^6 -Bis[3-(α -D-mannopyranosylthio)propanoyl}-L-lysyl}- N^6 -[3-(α -D-mannopyranosylthio)propanoyl]-L-lysine, Man₃Lys₂ (1), is a potent, competitive inhibitor of the D-mannose-specific, glycoprotein-uptake system of macrophages. It has a K_i value of 3.9 μ m for this system on rat-alveolar macrophages^{1,2}. A ¹²⁵I-labeled analog of 2 with Bolton-Hunter reagent³ was shown to bind to the macrophages with a K_d of 2.4 μ m, and to be internalized² with a K_m value of 6.4 μ m. Derivatization of β -glucocerebrosidase with 1 markedly enhanced the uptake of the enzyme by macrophages in vitro, and

RHN

NHR

R

R

$$R = HO$$
 $R = HO$
 $R = HO$

the targeting of the enzyme to a component(s) of the reticuloendothelial system in vivo⁴. Thus, the ligands 1 and 2 and their analogs are potentially useful in selective delivery of therapeutic agents to macrophages. For in vivo, tissue-distribution studies, we needed a label having a long retention-time in lysosomes at the sites of catabolism.

Recently, ³H-raffinose covalently coupled to plasma proteins was shown to be a useful, radioactive tracer for detecting the tissue and cellular sites of catabolism of long-lived, circulating proteins⁵. The sucrose portion of raffinose $[\beta$ -D-fructo-furanosyl O- α -D-galactopyranosyl- $(1\rightarrow 6)$ - α -D-glucopyranoside] is resistant to lysosomal hydrolysis, and does not readily diffuse from lysosomes. In addition, the D-

NOTE 143

fructosyl group is not known to serve as a recognition marker for carbohydrate-mediated, clearance processes⁶. For these reasons, it seemed that ³H-raffinose covalently attached to 2 might also be a good radioactive marker for *in vivo*, tissue-distribution studies. We now describe the synthesis of 4, and its characterization by ¹H- and ¹³C-n.m.r. spectroscopy.

Raffinose (3) was oxidized with p-galactose oxidase (EC 1.1.3.9) in the presence of catalase, to give 6"-aldehydoraffinose, which was reductively aminated with 2 in situ, using sodium cyanoborohydride as the reducing agent (see Scheme 1). Catalase was included in the reaction mixture in order to decompose the hydrogen

Scheme 1

peroxide produced during the oxidation reaction^{5,7,8}. The product 4 was isolated in 20% yield by column chromatography, and found to retain inhibitory activity for macrophage uptake of the glycoprotein D-mannosyl-bovine serum albumin with² a K_i value of 18.0 μ m. The ¹H-n.m.r. spectrum of 4 shows five anomeric protons (see Experimental section). The two pairs of doublets, at δ 5.47 and 5.07, are respectively assigned to H-1 of the D-glucosyl residue and H-1 of the D-galactosyl residue. The two singlets, at δ 5.38 and 5.36 (two protons), are assigned to H-1 of the D-mannosyl groups respectively attached to the α - and ϵ -amino groups of L-lysyl-L-lysine. The peak assignments for the ¹³C-n.m.r. spectra of 1 and 4 were made with the aid of literature references^{9,10}, and are summarized in Table I. The ¹³C-n.m.r. spectrum of raffinose¹¹ (3) is tabulated for comparison with those of 1 and 4 (see Table I). The peak assignments for C-2 (δ 71.88) and C-3 (δ 72.56) of Man₃Lys₂ (1) were based mainly on the carbon-proton couplings of these signals (see Table II).

TABLE I

CARBON CHEMICAL-SHIFTS^a FOR 1, 3, AND 4

Compound	Group or residue	. <i>C-1</i>	C-2	C-3	C-4	C-5	C-6
1	D-mannosyl	86.08	71.88	72.56	67.94	74.02	61.77
		85.91 85.82	(3C)	(3C)	(3C)	(3C)	(3C)
3	D-fructosyl	62.23	104.61	77-15	74.81	82.15	63.27
	D-glucosyl	92.92	71.78	73.49	70.24	72.22	66.73
	D-galactosyl	99.29	69.31	70.24	70.03	71.83	61.94
4	p-mannosyl (3 ×)	85.98	71.90	72.58	67.95	74.03	61.79
	D-fructosyl	62.29	104.64	77.18	74.77	82.16	63.18
	D-glucosyl	92.92					
	D-galactosyl	99,39					

^aThe n.m.r. spectra were measured at 25.2 MHz for solutions in D₂O, using a Varian XL-100 spectrometer. Chemical shifts are expressed in p.p.m. with respect to 1,4-dioxane, at 67.40 p.p.m. from external tetramethylsilane.

TABLE II

ONE-BOND, CARBON-PROTON COUPLING-CONSTANTS FOR D-MANNOPYRANOSYL GROUPS OF 1

$^{1}J_{CH}$							
C-1	C-2	C-3	C-4	C-5			
166.4	142.2	149.2	150.5	149			
167.1 167.8							

NOTE 145

Based on the preparation and characterization of 4 reported here, ³H-raffinose was also coupled to 2 via oxidation with D-galactose oxidase and reduction² with sodium cyanoborohydride. The major, radioactive contaminant, possibly a dimer of 6"-aldehydoraffinose⁸, was removed by chromatography on Sephadex G-15. The specific activity of the product, as determined by scintillation counting and a phenol assay¹² for sugar, was close to that of ³H-raffinose (0.7 vs. 1.0 Ci/mmol, with some diminution expected in the oxidation step with D-galactose oxidase), indicating that the tritiated 4 was not substantially contaminated with other compounds. The biological evaluation of 4 and its tritiated analog has been reported².

EXPERIMENTAL

General methods. — Optical rotations were measured with a Perkin-Elmer Model 241 polarimeter. Thin-layer chromatography was performed on plates of silica gel GF₂₅₄ (Analtech), and the spots were detected with a ceric sulfate (1%)-sulfuric acid (10%) spray. The proton n.m.r. spectra were recorded at 300 MHz with a Varian SC300 spectrometer, and the carbon-13 n.m.r. spectra were recorded at 25.2 MHz with a Varian XL-100 spectrometer.

N-6 · (6" - Deoxyraffinosyl) aminohexyl-N²- $\{N^2,N^6$ -bis[3-(α -D-mannopyranosyl-thio) propanoyl]-L-lysyl $\}$ -N⁶-[3-(α -D-mannopyranosylthio) propanoyl]-L-lysinamide (4). — A solution of raffinose pentahydrate (3) (220 mg, 0.37 mmol) and 2 (229 mg, 185 μ mol) in 0.1 m phosphate buffer, pH 7.0 (7.5 mL) was incubated with D-galactose oxidase (450 units, 60 μ g) and catalase (18 mg) for 4 h at 37°. A solution of sodium cyanoborohydride (100 mg) in 0.1 m phosphate buffer, pH 7.0 (1.0 mL) was added, and the mixture was kept for 24 h at room temperature. The solution was placed on a column of Bio-Rad AG-1 X-8 (HCO $_3$) ion-exchange resin, and eluted with water. The desired fractions were combined, and lyophilized, to give a fluffy material (400 mg) that was fractionated by chromatography on a column of Sephadex G-15 (V₀ = 60 mL, flow rate 0.15 mL/min). Fractions 30 and 31 (2.5 mL/fraction) were lyophilized, to give 4 (58 mg, 20%); $[\alpha]_D^{27} + 100.8^\circ$ (c 0.83, H₂O); n.m.r. (D₂O): δ 5.47 (d, $J_{1,2}$ 4.0 Hz, Glc H-1), 5.07 (d, $J_{1,2}$ 3.5 Hz, Gal H-1), 5.38 (s, 1 H, Man H-1), 5.36 (s, 2 H, Man H-1), 3.24 (m, ε -CH₂), 2.95 (m, SCH₂), 2.72 (t, 2 H), 2.63 (t, 4 H, SCH₂CH₂), and 1.28-1.90 (CCH₂CH₂CH₂C).

Anal. Calc. for $C_{63}H_{112}N_6O_{35}S_3 \cdot H_2O$: C, 46.49; H, 7.06; N, 5.16. Found: C, 46.36; H, 7.27; N, 5.16.

ACKNOWLEDGMENTS

The authors thank Drs. B. H. Arison and A. W. Douglas for recording the n.m.r. spectra, J. P. Gilbert and his associates for the microanalyses, and Dr. T. Y. Shen for his interest.

146 NOTE

REFERENCES

1 M. M. PONPIPOM, R. L. BUGIANESI, J. C. ROBBINS, T. W. DOEBBER, AND T. Y. SHEN, J. Med. Chem., 24 (1981) 1388-1395.

- 2 J. C. ROBBINS, H. M. LAM, C. S. TRIPP, R. L. BUGIANESI, M. M. PONPIPOM, AND T. Y. SHEN, Proc. Natl. Acad. Sci. U.S.A., 78 (1981) 7294-7298.
- 3 A. E. BOLTON AND W. M. HUNTER, Biochem. J., 133 (1973) 529-539.
- 4 T. W. Doebber, M. S. Wu, R. L. Bugianesi, M. M. Ponpipom, F. S. Furbish, J. A. Barranger, R. O. Brady, and T. Y. Shen, J. Biol. Chem., 257 (1982) 2193-2199.
- 5 J. VAN ZILE, L. A. HENDERSON, J. W. BAYNES, AND R. S. THORPE, J. Biol. Chem., 254 (1979) 3547-3553.
- 6 R. WATTIAUX, in G. A. JAMIESON AND D. M. ROBINSON (Eds.), Mammalian Cell Membranes, Vol. 2, Butterworths, London, 1977, pp. 165-184.
- 7 G. AVIGAD, D. AMARAL, C. ASENSIO, AND B. L. HORECKER, J. Biol. Chem., 237 (1962) 2736-2743.
- 8 A. MARADUFU AND A. S. PERLIN, Carbohydr. Res., 32 (1974) 127-136.
- 9 A. S. Perlin, B. Casu, and H. J. Koch, Can. J. Chem., 48 (1970) 2596-2606.
- 10 D. E. DORMAN AND J. D. ROBERTS, J. Am. Chem. Soc., 92 (1970) 1355-1361.
- 11 L. D. HALL AND G. A. MORRIS, Carbohydr. Res., 82 (1980) 175-184.
- 12 M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, *Anal. Chem.*, 28 (1956) 350-356.